Výrokové formy, kvantifikované výroky
K tejto téme sú dostupné aj Neriešené príklady a Test
Výroková forma
je výraz obsahujúci premenné, po dosadení ktorých sa z neho stane výrok. Príkladom výrokovej formy je x2–2x>0. Všimnite si, že výroková forma sama o sebe nie je výrok (nemá zmysel uvažovať, či je platná alebo nie), až po vhodnom dosadení za premenné, napr. 22-2·2>0, z nej vzniká výrok.
Podobne ako vytvárame zložené výroky, vieme vytvárať aj zložené výrokové formy. Napr.:
Prirodzené číslo x je deliteľné číslom 5 alebo je párne.
Kvantifikované výroky:
Niekedy z výrokovej formy dostaneme výrok nie dosadením konštánt, ale kvantifikáciou (použitím kvantifikátorov).
Základné kvantifikátory:
- ∀ – všeobecný kvantifikátor – čítame pre všetky , pre ľubovolné , každé .
- Príklad: A(x): x2≥0 je výroková forma.
- ∀x∈R:x2≥0 je pravdivý výrok
- ∃ – existenčný kvantifikátor – čítame existujú .
- Príklad: A(x): x – 1 > 0 je výroková forma.
- ∃x ∈ R:x – 1 > 0 je pravdivý výrok
Kvantifikátory s údajom o počte:
- každý prvok (všetky prvky) – znamená ľubovoľný prvok z danej množiny
- Každé prirodzené číslo je väčšie ako 0.
- Všetci žiaci v 1. A nosia okuliare.
- aspoň jeden prvok – znamená jeden alebo viac prvkov
- Aspoň jedno prvočíslo je párne.
- Aspoň jeden zo susedných štátov Slovenskej republiky má viac ako 10 miliónov obyvateľov.
- najviac jeden prvok – znamená jeden alebo žiadny
- Najviac jedno prvočíslo je deliteľné dvomi.
- Najviac jeden z nás pôjde v sobotu do kina.
- práve jeden prvok – znamená iba jeden jediný prvok
- Práve jeden žiak z 9. A sa zúčastnil besedy s mestskými policajtami.
- Dvoma rôznymi bodmi v rovine prechádza práve jedna priamka.
- aspoň n prvkov, n∈N, n>1 – znamená n alebo viac prvkov
- Aspoň 3 žiaci z našej triedy si spravili domácu úlohu z matematiky.
- Aspoň 2 triedy z našej školy sa zúčastia exkurzie do hvezdárne.
- najviac n prvkov, n∈N, n>1 – znamená n alebo menej prvkov
- Najviac 3 žiaci postúpia zo školského kola matematickej súťaže do okresného kola.
- Najviac 6 dvojciferných čísel je deliteľných siedmymi.
- práve n prvkov, n∈N, n>1 – znamená presne n prvkov, ani viac ani menej
- Práve 2 mestá na Slovensku majú viac ako 200 000 obyvateľov.
- Číslo 30 je deliteľné práve 3 prvočíslami.